Anush Tserunyan (UIUC Math) On "Structurable equivalence relations" by R. Chen and A. Kechris: Introduction Abstract: For a class $\mathcal{K}$ of countable relational structures, a countable Borel equivalence relation $E$ is said to be $\mathcal{K}$-structurable if there is a Borel way to put a structure from $\mathcal{K}$ on each $E$-equivalence class. The paper of Chen and Kechris [arXiv link] studies the global structure (including Borel homomorphisms and reductions) of the classes of $\mathcal{K}$-structurable equivalence relations for various $\mathcal{K}$. In this introductory talk, we will give some background and survey the main results of the paper.