Bruce Reznick (UIUC) Inequalities for products of power sums and the classical moment problem. Abstract: This is a partial repeat of a seminar I gave here in the early 1980s. For $x = (x_1,\dots x_n) \in \mathbb R^n$ and $r \in \mathbb N$, define the $r$th power sum $M_r(x) = \sum_{i=1}^n x_i^r$. Upper bounds for many products of power sums come from the Hölder and Jensen inequalities. I will discuss some other cases: for example $M_1M_3/(nM_4)>\frac 18$, where the lower bound is best possible, and the maximum and minimum values of $M_1M_3/M_2^2$ are $\pm \frac{3\sqrt 3}{16}n^{1/2} + \frac 58 + \mathcal O(n^{1/2})$. In the first case, the classical Hamburger moment problem gives a particularly illuminating explanation. Most of this can be found in my paper: Some inequalities for products of power sums, Pacific J. Math., 104 (1983), 443463 (MR 84g.26015), available at https://projecteuclid.org/euclid.pjm/1102723674 
