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My research in optimal geometry involves a unique combination of mathematical theory
and numerical experiments. Traditionally, pure mathematics has proceeded from examples
computed with pencil and paper; its progress has been measured entirely by theorems
proved. Applied mathematics has dealt with numerical simulations of differential equations
arising outside mathematics. I am in the vanguard of a new effort to use such numerical
modeling techniques to solve problems in pure geometry. This involves careful computer
experiments to generate and test conjectures about geometrical objects too intricate to
explore by hand, followed by traditional formal proofs of these conjectures.

The mathematics I am interested in involves shapes of curves and surfaces, often in our
ordinary three-dimensional space, which minimize different geometric energies. Of course,
many real-world situations can be cast in the form of optimizing some feature of a shape;
mathematically, these become variational problems for geometric energies. Thus most of
the problems I have pursued for their intrinsic mathematical interest also turn out to be
of interest to other scientists, including those studying foams, lipid vesicles, knotted DNA,
crystal structures, and computer-aided design. The optimal geometries I discover often have
aesthetically pleasing shapes, which can be illustrated well by computer graphics.

For the simplest geometric optimization problems, like the soap bubble which minimizes
its area while enclosing a fixed volume, there is extensive classical theory. But for the more
intricate problems I have studied, computer simulations are essential to gain insight, before
a full mathematical theory can be developed. For my simulations, I have often used (and
extended) Brakke’s Evolver, which is an excellent software tool for shape optimization. It
was originally designed for computing minimal surfaces by minimizing area; I have added
features to allow it to minimize other quantities, such as Willmore’s elastic bending energy
and various knot energies.

Bubble clusters are examples of constant-mean-curvature (CMC) surfaces. My recent
work with Große-Brauckmann and Kusner (to appear in Crelle’s Journal) has classified the
space of all complete embedded CMC surfaces with three ends and genus zero. This, we
found, is naturally equivalent to the space of triples of points on the sphere. Our next
project is to extend these results to CMC surfaces with more than three coplanar ends. My
PhD student Pavel Groisman is currently working on a dissertation extending these results
further, to handle certain symmetric surfaces with noncoplanar ends.

Foams can be thought of as infinite clusters of soap bubbles, and they minimize inter-
face area while fixing certain enclosed volumes. Lord Kelvin proposed a candidate for the
equal-volume foam of least interface area; in 1993, physicists Weaire and Phelan discov-
ered a better solution. With Almgren and Kusner, I gave a rigorous proof that their foam
indeed has less area than Kelvin’s candidate, but a proof that it is optimal seems diffi-
cult. Many interesting related questions remain open. A large class of foams (including the
Weaire/Phelan example) can be generated from the known chemical structures of transi-
tion metal alloys. I have undertaken numerical simulations of the foams in this family. The
possibility of beating Weaire/Phelan seems remote, but these foams are related to many

1



other intriguing mathematical problems regarding good triangulations of three-manifolds.
At Illinois, I have been involved in a joint project on foams (funded by NASA) with Aref,

head of the mechanics department (TAM). With my PhD student Wacharin Wichiramala,
I have run Evolver simulations (correlated with lab experiments at TAM) for foams with
varying ambient pressure, applied shearing, gas diffusion, or moving obstacles. In May
2002, Wichiramala completed his PhD, having proved the planar triple bubble conjecture:
the standard cluster does minimize perimeter. His new stability component bound will be
a powerful tool for future work on bubble clusters.

Foams in three dimensions exhibit the Plateau singularities of soap films. For foams
in higher dimensions, or foams with imposed symmetry, the possible singularities have not
been classified. I have listed candidates in higher dimensions, and plan to do computations
to decide which are successful: most will be ruled out by comparison surfaces, while the rest
can be shown to work by numerically integrating calibrations. Kusner and I are working
together to classify the singularities for symmetric foams, in different orbifolds; this will
lead to a better characterization of the Kelvin foam.

More complicated than area-minimizing foams are surfaces which minimize an elastic
bending energy. Mathematically, this is the integral of mean curvature squared, usually
known as the Willmore energy. Cell membranes are complicated bilayer surfaces and seem
to minimize this; for instance, the shape of a red blood cell can be explained by minimizing
this energy while fixing both the surface area and the volume enclosed. The Willmore energy
is invariant under conformal transformations of space, and biophysicists familiar with our
work have observed lipid vesicles undergoing these nonrigid motions in the laboratory.

We have used the same energy to drive a minimax sphere eversion, from a round sphere,
through a Willmore-critical halfway model, to the inside-out sphere. With Brakke, Francis
and Kusner, I generated a series of minimax eversions with different symmetry. These
were then illustrated in the computer graphics video The Optiverse which I produced at
the NCSA with Francis and Levy. The Willmore flow is expected to be more stable than
mean-curvature flow, and in our sphere eversions, the flow never pinches off any necks.

Loops of wire in space (which may be knotted) might be driven by the analogous bending
energy for curves, but one can also imagine an energy resulting from spreading electric
charge along the wire. An especially interesting modification of this electrostatic energy
uses a nonphysical power in Coulomb’s law, and has been shown to be (like the Willmore
energy) conformally invariant. Global minimizers are known to exist for prime knot types,
but little is known about their structure or about possible other critical points.

My experiments (with Kusner) on the conformal knot energy failed to find any unknot
which does not evolve to the global minimum, a round circle. This leaves open the intriguing
possibility that the energy-minimizing flow could provide a new proof of the Smale conjec-
ture, untangling any unknot. But more experiments are needed; perhaps a more tangled
starting configuration could get stuck. Kusner and I are have also looked into theoretical
methods for renormalizing analogous energies for embedded surfaces, which we have already
implemented numerically.

If we consider in particular the knot energy for geometric Hopf links, it reduces to an
energy on finite configurations of points in the two-sphere, which turns out to be exactly
the Coulomb potential. Therefore, understanding the Morse theory of this potential led
us to discover the first example of a link type with two different local energy minima.
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This equivariant Morse theory also gives a fascinating insight into the topology of the
configuration spaces of points on the sphere, and we expect to be able to prove that the
Coulomb potential is a perfect Morse function for up to six points, but not for more.

Our energy computations also suggest that the ordering of knot types by conformal
energy agrees closely with the ordering found by biologists through gel electrophoresis on
knotted DNA strands. With Kusner and Cantarella, I am examining other geometric quan-
tities for space curves, also of interest to biologists, including various notions of thickness.

Perhaps an optimal shape for a knot is that which can be tied with the shortest length
of rope; we have worked to make such a notion mathematically precise. Our preliminary
report on this work in geometric knot theory was published in Nature. Our new paper,
just published in summer 2002 in Inventiones Math., proves the existence of ropelength
minimizers for each knot type, and characterizes the shape of the minimizers for certain
links. In future work we will define a notion of criticality for this nonsmooth energy, and
demonstrate the existence of more than one critical point for certain knots.

In the course of studying these thick knots, we were led to define the second hull of a
space curve, as the set of points doubly enclosed by the curve, in a certain precise sense. In
a separate recent paper (to appear in Amer. J. Math), we show that any knotted curve has
a nonempty second hull. This has beautiful connections to the Fáry/Milnor result on the
total curvature of a knot, and to the study of minimal surfaces spanning the knot. My PhD
student Elizabeth Denne is working on proving new results about quadrisecants of knots,
which will give another proof of the second hull result, as well as better lower bounds for
ropelength.

Whenever one performs computer simulations, one must worry about the accuracy of
the numerical methods. Usually, the polyhedral surfaces used are thought of as approxima-
tions to smooth surfaces. But often notions from differential geometry can be given exact
interpretations for polyhedra, like Gauss curvature which is the angle defect at vertices.
Such geometric insights can lead to better numerical methods, and thus are of interest in
computer-aided design. At Illinois, I have been the lead mathematician in the interdisci-
plinary Center for Process Simulation and Design (CPSD) funded by an ITR grant from
NSF and led by Haber of TAM. The Center uses geometry to improve methods for meshing
and numerics in engineering calculations.

In continuing to study geometric optimization problems, my research will explore the
frontier of modern geometry. Problems that may be physically natural are still challenging
from both theoretical and computational standpoints. The interplay between numerical
experiments and rigorous proofs is what allows progress on both fronts. Those areas with
greatest mathematical interest because of their intrinsic elegance (like CMC surfaces, Will-
more surfaces and knot energies) also turn out to be important outside mathematics. I am
just starting, with my collaborators, to explore this new territory; each discovery therefore
presents many new avenues for further fruitful investigation. With the proper resources and
opportunities, I intend to bring optimal geometry, and computational math in general, into
its proper place in the forefront of mathematics in the twenty-first century.
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